后一页
前一页
回目录
回主页
第十一章 恒星宇宙


  太阳系-恒星-双星-变星-银河系-星的本性-星的演化相对论与宇宙-天体物理学近况-地质学

  太阳系

  上面说过,刻卜勒关于太阳和行星的观测,已经提供了太阳系的模型,但是在其中一个行星的距离还没有用地土的单位测定以前,这个模型的比例尺度是不知道的。里希尔在1672-3年间进行了这种测定工作(见150页),而且在若干方面还具有现代精确性:(1)1728年,布莱德雷发现了远星的“光行差”(当地球从一方横过这星光的行径,半年后又从反对方横过时,观测者两次所看见的星光方向的差异)。当时这一发现被用来证明光以有限速度进行,但因光速现已有他法测定,光行差反过来可用以测量地球的速度与其轨道的大小了。(2)当金星经过地球与太阳之间时,由地球上两个站所测定的时刻,也可用来以三角学的解法,计算太阳的距离。(3)当小行星(爱神星)于1900年经过地球附近时,曾以三角测量法测定其距离。
  以上三个方法所求得的太阳系的大小,是一致的:从地球到太阳的距离是9280万(后改为9300万)英里,相当于光以每秒186,000英里的速度行8.3分钟的距离。太阳的直径为865,000英里,其质量为地球的332,000倍,其平均密度为每立方厘米1.4克,而地球的平均密度为5.5克。
  我们关于太阳系的知识,在1930年由于汤姆保(Tombaugh)在海王星轨道以外发现了一颗新行星而扩大了。美国亚利桑那州旗杆天文台对天空某些可能发现行星的区域,作了缜密的搜索,方法是将几天时间内所拍的两张照片加以比较,照片上如果有一个光点改位,就说明那是一颗行星。这颗新行星围绕太阳运行一周需248年,其平均距离是36亿7500万英里。这颗行星命名为冥王星。冥王星轨道的直径为73亿5000万英里,可以看做是现今(1946年)所知的太阳系的范围。
  人们时常讨论别的星球是否有生物居住,对于太阳系而言,这问题便成了别的行星上的情况如何。这些情况中最重要的一个是行星外围的大气的性质。大气的存在依靠“脱离速度”,——即气体分子运动时足以使其脱离行星引力的羁绊的速度、这速度的数值为V2=2GM/a,式内G麦引力常数,M表行星的质量,a表其半径。以每秒英里计,对于地球,V=7.1,对于太阳为392,另一极端,对于月球为1.5。运动最快的分子是氢分子,在0℃为每秒1.15英里。根据秦斯的计算;如果脱离速度为分子的平均速度的4倍,在5万年内大气便完全逃逸,如果为5倍,则逃逸率便小到不足计较。因此月球上没有大气,大的行星,如木星、土星、天王星与海王星,比较地球有更多的大气,火星与金星上的大气可以和地球上的相比拟。金星上多二氧化碳;但显然没有氧气与植物;那里的条件尚不能使生物存在,而火星上呢,生物存在的机会似已过去,或将近过去。

  恒星

  冥王星轨道以外,是一片洪渺无边的空间。当地球在六个月内由轨道的一边行至它一边时,凭借缜密地观测可以察知最近的恒星在较远的恒星所形成的背景上改位。再过六个月恒星的位置复回到原处;如果把这些星本身的微小运动略而不计的话。由于我们已经知道地球轨道的直径,只要把恒星本身的微小运动和光行差估计在内,根据一颗星在六个月内的现差,用三角测量法,便可推求恒星的距离。
  1832年,韩德逊在好望角对恒星视差进行了观测,接着在1838年,便有贝塞耳(Bessel)和斯特鲁维(Stfuve)进行了精密的测定。用这样的方法发现,最近的星,一个微弱的小光点,叫敞半人马座比邻星,距离我们达24万亿(2.4×1013)英里(光须走4.1年),约为冥王星轨道的直径的三千倍。明亮的天狼星的距离为5×1013英里,或8.6光年。约有两千颗恒星的距离,已用这个方法测定到相当高的精确度,但这个方法现今只可应用于十个光年以内的恒星。
  睛明的夜里,人眼所见的恒星可达数千。如果使用口径愈来愈大的望远镜,则可见的星愈多,数目的增加并不与望远镜的口径成正比例,因此我们可以说:恒星的数目不是无穷多的。美国威尔逊山天文台的100时反射望远镜,在1928年是世界上最大的望远镜,能够观测到的星数估计约为一万万颗,而在我们的星系(银河系)里,恒星的数目,据不同的估计约为15万万颗至300万万颗不等。200时反射望远镜现在正在制造中。
  希帕克过去依照星的亮度,将星分为六个“星等”,而现今已将这尺度扩充到包括20等以外的微弱星,其亮度只有一等星的万万分之一。这种量度的方法,自然是依据地球上所看见的恒星的视亮度为标准。对于一颗已知其距离的星,我们可以计算它移至某一标准距离时应有的视星等,这种星等叫做绝对星等。
  如果按绝对星等分类,则在所有星等的数值中都有星的存在,但如赫兹普龙(Hertzsprung)所指出,而后来为罗素(H.N.Russell)所证实的:高星等与低星等的星的数目,比较中星等的星多。前两者叫做“巨星”和“矮星”。以后还要详细谈到。
  同一光谱型而距离已知的恒星证明,绝对星等和某些谱线的相对强度之间具有有规则的联系。因此仔细研究这些有决定性的谱线,可以求得未知距离的星的绝对星等,然后再根据其视星等以估计其距离,即使这距离远到不能以视差的方法来测量。这是估计恒星距离所用的几个间接方法之一。

  双星

  许多是用肉眼看似乎是单颗,用望远镜看,乃是成对的。有些成对的双星,可能互相离得很远,所以看来很接近的原因,是由于它们几乎在同一视线上。然而双星的数目很大,用恰巧在同一视线上的说法,不足以解释全部双星。在大多数情况下,双星中的两星之间,一定有某种关系。威廉·赫舍耳于1782年开始观测双星,到1793年,他已经找出足够多的双星的行径,可以证明双星围绕着位置在椭圆形一个焦点上的公共重心,而运行在椭圆轨道上。因而他证明,双星的运动也遵循牛顿在太阳系上所寻得的引力定律。
  由距离和轨道部已测定的一些双星,呵以算得它们的质量,一般是太阳的一半至三倍。这与由其他方法所得的结果颇为吻合。各类星质量上的差别并不很大,而其大小与密度却有极大的差别。
  有些双星的两个成员相距太近,以至不能用望远镜分开,但可用分光的方法去分辨它们。如果我们的视线恰在双星的轨道平面上,当双星的联线垂直于视线之时,则一星向我们而来,他星背我们而去。于是按照多普勒原理,一星的光谱的谱线将向蓝端移动,而他星的谱线则向红端移动,因而在双星光谱中,其谱线的数目必至加倍。但当两星的位置一前一后时,它们便在横过我们的视线方向运动,因而其光谱里便无谱线加倍的现象。靠观测这种光谱上的变化,我们可以估计其绕转的周期与速度,并可计算两星的质量之比值。如果目视与分光两种测量均属可能,则两星的质量都可以求得。
  1889年,皮克林(E.C.Pickering)首先以分光的方法发现一对双星。他宣布大熊座&星光谱中有些谱线加倍,表示这颗星是周期为104日的双星。自此以后成百的“分光双星”被人发现,主要是在美国和加拿大的天文工作者用了大望远镜与摄谱仪,而且在清朗空气中工作所发现的。

  变星

  许多恒星的光常改变其强度。如果变化是不规则的,这或者是由于炽热气体的屡次爆发,但光变的周期,在许多例子中,是颇有规律,因此,可以推断,光变的原因或者是由于当一颗亮星与其暗的伴星互相环绕运动时,亮星的光的一部或全部,于一定时间无暗星所遮蔽,而形成亮星的星食。这个解释有时可从光谱得着证实,因为当亮星在向着或离开地球运行时,其谱线发生周期性的移动。根据亮度随时间变化的曲线,再加上谱线的测量,常可以对某些双星系有很完全的了解。例如大陵变星与天琴座B星就是这样。
  双星的数目很大,还有更为复杂的体系——聚星,也可以用相同的方法,加以识别和研究。例如我们熟悉的“北极星”,由分光测量,知其含有每4日互相绕转一周的两星,还有一个以12年为周期的第三星,以及一个以大约两万年为周期的第四星。
  更有其他变星如仙王座&星(造父变星),不能用星食说去作解释。它们每隔几小时或数日进发出比它们的最小亮度强若干倍的光辉。这种造父变星中的短周期的一类,表明其光变周期与其光度或绝对星等有一定的关系,这关系是1912年哈佛大学勒维特(Leavitt)女士所发现的。这个发现的价值立刻为赫兹普龙及那时在威尔逊山天文台工作的夏普勒(Shapley)所认识。这现象很有规则,可用以测量距离未知而据与此同类型的星的光变周期,去估计其绝对星等;再观测这颗星的视星等,便可计算其距离。这是测定距离太远、不能表现视差之星的又一方法。

  银河系

  天空恒星最多的区域是在一个宽度不定的带上,这带叫做银河,围绕天穹成一巨环。有些地方星数太多,以致成为“恒星云”,须有优良的望远镜,始能鉴别其中的个别值星。掺杂其间的还有不规则而且不能加以分析的“星云”。在恒星聚成一带的中间,剖分银河的大平面,叫做银道面。这可看做是恒星系的一个对称平面。恒星似问这平面丛聚,特别是较热的星与较暗的、因而一般是较远的星。
  这表示我们的恒星系附于银道面,而成扁平的形态,好象形成一个大透镜状的恒星集合体。我们在这集合体之内,而不居于其中心。我们所看到的银河里的星所以比较多,主要是由于我们望银河时是朝着透镜的边沿去看,而在这方向恒星散布空间的厚度比别处大得多。
  除恒星云与不规则的星云之外,还有恒星的球状集团,约100个,这些“球状星团”以银河中段外边不远的地方为最多。其中包含造父变星。夏普勒根据它们的光变周期和借助其他间接方法,算出这些星团距离我们约2万至20万光年。
  由此得知,我们的恒星系有一最长的直径,至少长达30万光年。我们的太阳,离开整个星系的中心约6万光年,而在中央平面偏北处。多年观测恒星的视运动的结果表明,太阳是以每秒13英里的速度,朝着武仙座的方向运动,如果以这运动的方向作为参照线,则有两个主要的星流经过空间。
  天空中最惊人的东西,是那些巨大的旋涡星云。它们很可能是正在形成中的星系或者说银河系,关于这一观点的论证,以后还要谈到。这些星云的范围非常庞大,虽为稀薄气体所组成,但一个星云就含有足以形成十万万个太阳的物质。它们的数出很多:加利福尼亚威尔逊山天文台的哈布耳(Hubble)博士估计,在该台的100英寸望远镜中,可以见到的约有两百万个。它们中有些距离很远,估计在50万至14000万光年,很可能在我们的星系之外。宇宙空间里似含有很多恒星聚集的银河系,即夏普勒所称的“岛宇宙”,我们的星系不过是其中之一而已。
  1904年,荷兰格罗宁根的卡普登(Kapteyn of Groningen),在研究恒星统计时,发现我们的星系里有两个在多少不同的方向上运动的主要星流。现今,这两个星流应当和荣登的奥尔特(Oortof Leyden)的另一发现联起来讨论;这是银河系整个的自转,它因绕距离我们一万秒差距在人马星座的方向上的一个中心旋转,自转的速度,按照引力定律,向外减少。在我们的区域轨道速度约为每秒250公里,转一周约需二亿五千万(2.5×108)年。整个银河系的质量约为1500万万(1.5×1011)个太阳,如果每颗恒星的平均质量等于太阳的质量,银河系所含的恒星大约也是这个数字,约为外推法计算的数字的十倍。

  星的本性

  赛奇(Secchi)神父约于1867年在罗马提出一个按怛星的光谱分类的方法,哈佛天文台又加以很大的改进与扩充。星的颜色在肉眼看去已有差别。由于照相对于光谱紫色的一端比较灵敏,以照相法求得的星等,与肉眼估计的并不相同,其间的差异成为星色的一种量度方法。这些差异也表现在各种恒星的光谱里。在这些恒星的光谱里可以寻找出一系列的谱线,不知不觉地逐渐过渡,而表现出各类恒星的特性,哈佛大学以O,B,A,F,G,K,M,N,R 去区别它们,这序列里前面的是比较蓝色的星。
  O型星的光谱,在暗的连续背景上,出现若干明线。在有些光谱里,氢与氦的谱线很强。B型星的光谱呈现暗线,氦线十分显著。A型光谱中有氢谱线、还有钙和其他金属谱线,在F型光谱中,后面这些谱线加强。G型星包括太阳,呈黄色,其光谱在明亮背景上呈现暗线。碳氢化合物的谱线第一次出现于K型星中。M型星呈现宽的吸收谱带,特别是氧化钛的谱带。N型星呈红色,其光谱有一氧化碳和氰(CN)的宽谱带。R型星虽不如N型那样红,但也有N型里的那些吸收谱带。
  这种关于光谱的观察,被用来估计各型恒星的有效温度。如果将一个黑体(它可以看做完全的辐射体)渐渐增高温度,则其辐射的特性与强度也逐渐改变。就每一温度而言,辐射能量与波长有一特殊的曲线关系,在某一特定波长上达到最大值。随着温度增高,这一最大值的位置向光谱的蓝端移动,因而可以说明温度。人们还用几种方法对能量的分布加以研究,例如采用照相法及研究辐射特性的变更等方法。不但如此,温度和电离对于光谱的影响,还可以在我们所能控制的范围内,在实验室里加以研究。萨哈(Saha)在1920年、福勒(R.H.Fowler)和米尔恩(E.A.Milne)在1923年都曾经利用恒星光谱中若干吸收谱线的形态,来估计起吸收作用的原子的温度。
  各种估计巨星温度的方法所得的结果,颇能互相吻合。则可看见的星大约是1650度,已知最热的星达23000度。这些当然是辐射表皮层的温度。星的内部必然较外层为热,其温度可达几千万度。
  上面讨论绝对星等时,我们说过,大多数的恒星分为“巨星”和“矮星”两大类,前者光度比较后者大得多,可是也有一些中等光度的星。但可以注意之点是:这一分类只有对于K型星以下较冷的星(温度不超过4000度)才显著。对于较热的星,分类便不显著,及至B型星就完全混淆莫辨了。这些恒星都是巨星,其光度都是太阳的40至1600倍。
  这些事实被人认为指明了一个确定的结论:即所有的恒星都经过一个大体相同的演化过程。每颗恒星最初是一较冷的物体,嗣后温度渐渐增高,而达到最高温度(视其大小而定),然后再渐趋冷却,温度渐次下降,经历一个相反的过程。
  当恒星温度升高时,它发出大量的光,这意味着它的体积很大,因而归类为“巨星”。但当其冷却时,它的大气在温度方面经历一个与以前相反的过程,在冷却时所经过的光谱型,虽然在细节上略有差异;但大体上与温度升高时期所经过的相同。然而这颗星现在的绝对星等,换言之即其光度,却比较以前小得多了。既然这时温度与以前上升时期相同,这一事实就表示这颗星的体积较前为小,遂成为“矮星”了。
  这是罗素所阐述的恒星演化过程,与勒恩和利特尔(Ritter)所阐明的互相吸引的气体团的动力学相符合。如果这团气的质量够大,则重力必定使它收缩。它将放出热量而变热。但当其收缩时,其收缩的速率必逐渐减少。到了某一临界密度时,这一庞大的炽热气团所生的热量,将小于其所辐射的热量,于是这团物质开始冷却。我们在讨论太阳的年龄时说过,这过程不能解释其所放出的全部热量,那时已经认为或有他种能量的来源(如原子的蜕变)取决于温度,并经过一种相似的过程。
  这个恒星演化的理论,已经根据最近的研究加以修正,而将原子结构的新知识应用于天体物理学。人类靠了他处在原子与恒星中间的有利位置,可以利用由一方所得的知识,作为研究另一方的参考。
  已知太阳或任何一颗星的大小与平均密度,并假定其整体都是气体,就可以计算其表面下压力随深度而增加的变率,爱丁顿便做了这个计算。对于气体的恒星,爱丁顿发现光度主要随质量而变化,在某些限度内,光度粗略地与质量成正比例。在恒星里任一层,其上面的压力,为下面气体的弹力和辐射的压力所支撑。据分子运动论,气体的弹性,是由于气体分子的碰撞造成的,而气体分子的速度随温度而变化。要支持太阳或其类似的恒星内部的巨大压力,则其温度当达四千万度至五千万度的数量级。如有一星比这个大得多,据爱丁顿推算,其内部的辐射压必至过大,致使它变成不稳定,而趋于爆裂。这样,星的大小有一自然的上限。
  恒星内部的一个区域,甚至一大区域,实际是一个恒温的包亮,其总辐射按绝对温度的四乘方而改变。当温度增高时,在光谱上能量最大的辐射,按已知定律,逐渐变为波长较短的波。当温度高达数百万度时,则其最大能量便远远超过可见光谱的波段,而至X射线或波长更短的辐射区域,但这些辐射,在其行至恒星外层的途程中,不断地受到原子的碰撞与作用,因而变成波长较长的辐射,最后仍以光和热的形式发出。但有一引人注意的事实:即富有极大穿透力的射线(即“宇宙线”),已经为麦克伦南(McLennan)、米利根、科赫斯特等人所发现,这些射线,虽然份量很小,好象经过我们的大气,而来自空间。秦斯说:“在某一意义上,这种辐射是整个宇宙里最基本的物理现象,空间的大部区域合这种辐射远较可见光和热为多。我们的身体日夜被它穿过,……它破坏我们体内的原子每秒达数百万个。这可能是生命的要素,也可能在杀害我们”。有人说这种富穿透力的辐射是质子和电子互相湮灭时,或者氢聚合为重原子时所发出的,地点可能是在星云或空间里极度稀薄的物质里,因为由那里所射出的能量无须费力就可以穿过覆在恒星外部的物质。
  我们知道X射线和穿透性更大的Y射线是极有效的电离剂。所以星内的原子当是高度电离的,即其外部电子都被剥夺了的;这个概念于1917年为秦斯所倡导,以后更为许多人研究。一个普通原子所占有的体积,即别的原子不能贯穿的体积,就是这些外部电子的轨道所占有的体积。如其外部电子遭到剥夺,则这原子的有效体积必大为减小,实际成为原子核与其最近电子环(其轨道较外部电子的轨道小得多)的体积。结果,恒星内部的原子既然小得多,则其相互干扰也必远较我们实验室的为小;因而恒星物质虽在高密度下,其性质也象“理想气体”,而遵守波义耳定律。
  假设恒星是气体的,则我们可以数学计算一颗星的质量与其所发的光和热之量的关系,换言之,即可知其光度为何。1924年,爱丁顿算得星的质量愈大则其辐射也愈大。他求得一个理论的关系,而且在把一个数字因子调整以后,使这个关系确与事实符合。就是对于某些恒星,这个公式也是适用的。因其密度很大,在1924年以前人们还认为它们是液体或固体的,而且以为这一理论不适用于它们。但爱丁顿认为,较水重的太阳,以及较铁重的其他恒星,实际上都是气体;因其电子已被剥夺,所以这些恒星的原子体积较小,在大部时间内,彼此不相接近。
  而且一个新发现使密度的可能范围更加扩大了。1844年,贝塞耳发现天空最亮的天狼星运行在椭圆轨道上,于是他假设有一伴星围绕天狼星运行,其质量约为太阳的4/5。十八年后,这颗星为克拉克(Alvan Clark)所发现;用现代望远镜不难看见这颗星,其所发的光约为太阳的1/360。当时曾认为这颗星是红热的、一个行将没落的星。亚当斯在威尔逊山查得这颗星并非红热而是白热的。其所发的总光量很小,是由于其体积很小;它不比地球大很多。从这个大的质量与小的体积,得知其密度约为每立方英寸一吨,这是一个骇人听闻的结果,在当时认为是不可信的。
  但是不久新的证据出现了。根据爱因斯坦的理论,物体发出辐射的频率,应随其质量和体积而不同;因此谱线应按半径除质量的比例向红端移动。亚当斯测量了天狼伴星的光谱,也得着相同的高密度,约为铂的密度的两千倍。现在更发现另外几颗星,密度与此相似或更大。秦斯认为这些星中的物质不再是气体,而与液体相近了。其原子很可能只余下原子核,甚至其最内层的电子也被剥夺。比较正常的星,如天狼星与太阳,可能为核外剩有一层电子的原子所组成。所以根据原子结构的理论,我们就可以解释这一事实:恒星分为明显的几类,而且每一类仅包括某些体积限度内的恒星。在那样高的温度下,地上的原子将会完全破裂。要维持这些不同的体积,恒星内部未知的深度的原子必较我们熟悉的地球上的原子为重,而类似地球上的原子的较轻的原子,必浮在表面,而成为辐射的表层。
  有三个方法可以估计恒星的年龄:(1)双星的轨道最初应为圆形,以后受到过路星的引力的影响,而逐渐变形,这种影响的可能频率可以计算,因而由轨道的实际形状,可以计算恒星的可能年龄。(2)明亮的星所组成的星团在空间运动时,逐渐失掉其小的成员,造成这些观察到的分散情况所必需的时间,是可以计算的。(3)恒星的运动能量,也如气体分子一样,必定有达到平均分配的趋势;西尔斯(Seares)测得太阳附近的恒星差不多已经达到这个阶段。由分子运动论,可以计算产生这种动能平均分配状况所需的时间。这三种方法都一致表明,我们的星系中恒星的平均年龄可能是5万亿至10万亿(5至10×10[12]年。
  要维持这样长久的生命,必需大量辐射能量的供给,数量之巨,远非引力的收缩,或放射性物质所能解释的。爱因斯坦的理论很自然地引导人们形成一个观念:这种能量的来源可能是由于阳性质子与阴性电子的相互湮灭,这是1904年秦斯用来解释放射物的能量的说法。这理论已经详细地完成。可以肯定,恒星在不断损失质量。辐射造成定量的压力,因而具有一个可以计算的动量,即质量与速度的乘积。太阳表面每平方英寸辐射出50马力,这说明整个太阳每天损失质量3600万万吨,而质子与电子的相互湮灭可说明这种损失发生的机制。太阳在其体积更大、年龄更轻时,其质量的损失必当更速,于是我们可以给与太阳年龄以一个上限,大约是8万亿(8×1012)年。这与其他方法所估计的恒星年龄相符合,但根据以后的研究来看又是可怀疑的。

  星的演化

  恒星的年龄既经估定,我们自然会问恒星是怎样产生的?即使在最大的望远镜中,恒星也无可见的体积——最近的恒星也是太远了。但是天空明亮的一片一片区域,所谓星云,早已为人发现。仙女座中的大星云,能被肉眼看见,在望远镜发明以前即已发现。而猎户座内的另一星云,也于1656年为惠更斯所发现。
  星云有三大类:
  (1)形状不规则的星云,如猎户座内的。
  (2)行星状星云,形状有规则的较小的结构。
  (3)旋涡星云,象似明亮的大旋涡。
  数目最多的星云是旋涡状的。我们已经说过,现代望远镜中可见的星云,约有二百万个。它们的光谱是连续的,而重合有吸收谱线,与F至K型的星(包括太阳在内)的光谱相似。有些星云是弥漫的炽热气体团,有些含有定形的恒星。星云呈现有急速转动的模样。自轨道平面的边上平视所见的星云,可以在光谱学上进行研究,另外一些与我们视线正交的,可在逐年的照片上看出其有可测量的转动,每转一周约需几百万年。这好象说明其运动的迂缓,但是我们观测到它们有很高的线速度,所以其转动周期的悠长,不是由于其运动的迂缓,而表现其体积的庞大。
  如果假设不同的星云的转动速度大略相同,则由以上所述,自轨道平面迈上平视所见的星云,可以由光谱学测得其线速度,而横过我们视线的星云,也可以测得其每年的角速度,这样比较这两种速度,便可得其距离的一个估计值了。旋涡星云的旋臂中可以看出有造父变星,其光变的周期可假设与其绝对亮度有通常的关系,因而测量它们的视亮度,又可得距离的另外一种估计值了。由此所得的数字,约在几十万至几万万光年。因而大多数旋涡星云都很远,而在我们的星系以外。
  恒星演化的星云学说,最初为康德所提出,继于18世纪末为拉普拉斯引用,去解释太阳系的起源。拉普拉斯根据气体星云的概念,认为星云充满海王星轨道里边的空间,而且具有旋转运动。它因其自身的引力而收缩。但因其角动量不变,故其旋转速度渐增。在其收缩的各阶段中,它遗留下环形的物质,经凝结而形成行星与其卫星,绕中心的物质转动,这中心的物质即形成太阳。
  这个学说有若干困难。1900年,莫尔顿(F.R Moulton)指出,由环形不会破裂变成球形。张伯林(T.C.Chamberlin)并证明在那样大的气体团中,其引力并不足以克服其分子速度的扩散效应与辐射压而使其缩小。秦斯以别的论据证明行星是不能由凝结而形成的。
  但是旋涡星云比拉普拉斯所想象的大过百万倍,在这规模下,其整个的发展过程也大不相同。这时引力远比气体压力和辐射压更为有效,星云不但不扩散,而且收缩,并且旋转得比拉普拉斯所想象的还快。这个解释,应用于小规模的太阳系遭到失败,应用在庞大的星系上,却颇有成功。
  秦斯已经以数学证明:一个具有引力的气体团,或因其他物质团的潮汐作用而开始转动,则将渐渐形成一双凸透镜的形状。若其旋转加快,则其边缘将不稳定,而裂成两个旋臂。旋臂上发生局部的凝结,每个凝块具有适当体积,可以在我们所见的恒星的大小的狭小限度内形成恒星。这个由理论得出的预言已为哈布耳所证实。哈布耳根据观察的结果,将星云分为秦斯所预言的类型。于是我们在旋涡星云里,发现在我们星系以外在遥远空间里正在形成中的其他星系。
  旋涡星云臂上的一小滴,是不是变成我们这样的太阳系呢?根据秦斯的数学推证,这不是一定可能的。如果这小滴的转动足够迅速,而至酿成分裂,则分裂的结果可能是互相绕转的双星。所以双星很可能是恒星演化的一个正常规程,其另一过程,则是孤独的单颗星。
  但莫尔顿、张伯林与秦斯对太阳系的起源提出一些猜测性的说明。如果在某一早期阶段,两个气体星运行到彼此邻近时,则将发生潮汐波。及至两星接近到某一临界距离时,这潮汐波即将射出长臂状的物质,然后再裂成具有适当大小与特性的物体,而形成地球与其他行星。但这一事件发生的可能性很小,据秦斯计算,伴随象我们的行星系的恒星,大约在十万个恒星中才有一个。
  恒星演化的新学说,可以概括叙述如下:恒星是旋涡星云的旋臂中所飞出的大小相近似的气体团。它们发放辐射,其质量因而减少。又因其体积较大的发出辐射的速度较快,所以它们的质量逐渐趋于相等。
  无论其温度与压力为何,最年轻的星最重,而辐射也最多。如果它们全由象地上的原子所组成,则温度与压力增高时,辐射也当随之而增加,情况就与上面所说的不相同了。这一证据又表示辐射能量大部来自我们所未知的几种类型的极端活跃的物质。这些物质当星衰老时即归于消逝,很可能是由于原子的嬗变,使物质湮灭并转化为电磁辐射。这样释放的能量是很大的,照相对论一节中所说:质量m可以转化mc2的能量,这里c为光速,每秒3×10[10]厘米,所以,一克质量的物质转化为辐射后,其能量等于9×10[20]尔格。由于物质湮灭或即便是适宜的嬗变,所释放出来的能量是很大的(见451页)。
  天体物理学上的这一个新理论,使人想到牛顿《光学》书中的质疑第30所说的;“庞大物体和光不是可以互相变化的吗?物变为光与光变为物,是同似乎乐于变化的自然程序十分符合的。”
  恒星可能正在化为辐射,宇宙间物质的命运不是直接化为空间的辐射,就是变成具惰性而不活动的东西,如构成我们世界的主要物质。地上的物质含有92个元素,自原子序数为1的氢,至原子店数为92的铀。如果还有别的元素存在,它们不是同位素,便是有更高的原子序数,其结构必较铀更为复杂。现在至少已经发现一个名叫钚。它们必然富有强烈的放射性,所以不会稳定,因而大多数可能早已失其存在了。从前以为光谱的证据说明物质的演化由简单而趋于复杂,自老年星中的氢,而趋于青年星中的钙。可是今天对于这事实的解释大不相同。人们认为这只表明,各种恒星中的情况,有利于氢或钙在其大气之中与其上辐射的放出。有些天文学家以为在恒星的演化中便伴有复杂原子的分裂,其中大部直接化为辐射,小部变为不活泼的灰分;这些灰分虽是宇宙变化的副产品,但却是组成我们身体和我们世界的物质。铀与镭或者是介于留在地上的这些活泼原始原子的最后残迹,与构成我们的不活泼元素两者中间的物质。
  只有与我们所处的情况很相近的星球好象才有生命的可能。行星系可能是稀有的,我们的行星似乎不可能维持“别的世界上的生命”。
  凯尔文的能量散逸原理指明了事物的最后的状态,在这种状态中,物质与能量都作均匀分布,而不再有运动的可能。现代理论虽然把其过程加以修改,但也得到相似的结论。宇宙所趋向的最后情况,乃是从活泼的恒星原子化作空间的辐射,与变成将熄的太阳中或凝冻的地球中的惰性物质而已。即令宇宙中物质全部毁灭,所产生的辐射也仅能使空间的温度增高几度罢了。秦斯算得:只有当温度增高到7.5×10[12]度时,空间方能为辐射与再度沉淀的物质所饱和。活动物质的原子遗存的概率和辐射浓聚于一处,使物质再度沉淀的概率,都非常渺小。不管我们等候这机会的来临需要等候怎样久的时日,永恒总是更久的。霍尔丹(J.B.S.Haldane)曾经提出一种看法[据爱丁顿告诉我,汉堡的施特尔内(Sterne)教授在谈话中也曾提出过这种看法],认为这种巧合的浓聚情形很可能在现有的宇宙消灭后,重新创造出一个新的宇宙——我们现在的宇宙或者就是在辐射弥漫的漫长年代以后,产生的。但是秦斯与爱丁顿都曾对我说,他们不相信这种说法。别种情况发生的机会更大,会防止那种很少可能的偶然情况发生。
  在这些问题上,我们似乎不可能找到确实的证据。历史昭示我们需要谨慎从事。天体物理学的现代观点仅开始于数年以前,我们已经知道的比有待学习的实在还少得很。

  相对论与宇宙

  相对论提供的新的自然现,在其发展进程中,必然深刻地影响我们对于物质宇宙的观念。它在解释万有引力时,用引力场中呈现弯曲的自然路径的理论去代替吸引力的观念。这就不但在精密的实验中,导致稍有不同的结果,而且如我们以前所说过的,也完全改变了我们对于宇宙广袤的观念。
  如果采用欧几里得的空间与牛顿的时间,则我们自然以为存在是无穷的。空间无限地伸至最远的恒星以外,时间则通达过去与未来,均匀而永恒地流逝着。
  但是,如果我们的新时空连续区,由于物质的存在而表现弯曲,我们就进入另一思想境界了。时间或者仍然是无止境地从永久到永久地流逝着,而空间的弯曲则指示出一个有限空间的宇宙。设想我们以光速继续前进,则终将达到一个有限的境界,或重返回到我们的出发点。哈布耳估计整个空间约为威尔逊山大望远镜所可见到的那一部分的十万万倍,而这个望远镜能够看见我们星系以外的星云两百万个之多。这表明光线经行宇宙一周,约需千万万(1011)年。爱因斯坦曾描绘过一个三维的空间,其弯曲的方式正如我们在二维空间所谓的圆柱面那样。时间则相当于圆柱的轴线。德·西特(De Sitter)则想象一个球面时空。如果我们向外旅行,去追寻更大的球,则我们终将达到一个最大的球。这里的时间,从地球上看去,好象停止不动。正如爱丁顿所说:“好象疯人的茶会,时间永远是六点钟,不管我们等候多久,总是看不到什么动静。”但是如果我们能够达到这个保守的天堂,则我们必定感觉在该处经历的时间,也依然流逝,不过其流逝的方向不同而已。
  德·西特指出,这种从地球上所见的时间的变慢,有一轻微的证据。有些旋涡星云是我们所知道的最远的物体。它们光谱中的谱线,与地球上光谱的同一谱线比较,位置颇有移动,如哈布耳所指出的,绝大多数部移向红端。这现象经常被解释为由于旋涡星云具有很大的退行速度(比较其他任何天体的都大),这现象有时又被解释为宇宙的膨胀。十分可能,我们现在所观察的这一现象,就是从地球上可以看见的原子振动的变慢,即大自然的时计的速度的改变,或时间的尺度的变化。

  天体物理学近况

  现在已有许多证据表明,星际空间有稀薄物质的存在。猎户座&星是一对双星中的一个成员,与上述的别的双星一样,当其环绕其伴星旋转时,其谱线表现有移动的现象。1904年,哈特曼(Hartmann)注意到H和K两条钙线,并不参加这种周期性的移动,而且在别的双星的光谱里纳的D谱线也象是驻定的。但是普拉斯基特(Plaskett)与皮尔斯(Pearce)发现这些谱线并非真正固定,而表现有相当于我们的星系自转的运动。这些差不多固定的谱线,只在1000光年外的恒星光谱里才看得见,而且恒星距离愈远,这些谱线愈强;它们显然是散布在空间的钙和钠所造成的,在有些地方,凝聚成宇宙云或气体星云。这种星际物质的密度极小;就平均而言,这是10-24,即每立方厘米内只有一个原子;即在一个典型星云(例如猎户座大星云)的中心,也是10-20,只有实验室所能造的高度“真空”的密度的百万分之一。由于碰撞的稀罕,宇宙云里的质点不会丧失很多的热量,其所能维持的温度达15,000℃,而空间里陨星的温度可以降到-270℃,仅在绝对零度上3度而已。
  气体星云不自发光,而是靠其范围内的极热星的光而发光。极热星所发的光激发星云的质点,使其射出不同周期的光线,换句话说,即造成荧光效应。还有所谓暗星云。这种暗星云阻碍其后面的远星的光透过。暗星云可能与亮星云具有相同的性质,只是在其范围内没有热星激发其发光而已。这些星云里的质点、大小和光的波长相似;它们具有很大的吸光能力。
  亮星云光谱中有明线,主要是电离氢和氦的谱线,以及实验室里还没有见过的谱线,例如其中两条绿色的谱线,假想其起源于一末知的、名叫氧的元素。但是,1927年包温(I.S.Bowen)发现这些奇怪的谱线是由双电离氧原子所造成的,所谓双电离氧原子也就是其卫星电子从一个轨道跃到另一轨道。在地球上比较扰攘的环境里这些轨道间的路径是不通行的,可是在安静的星云里,在长时间内这路径是敞开的。其他谱线生于单电离的氮,其卫星电子也遵循“禁戒跃迁”。可见空间里有氧和氮(我们熟悉的空气)以及钠和钙。
  1869年,勒恩假定太阳上的质点和理想气体中的质点一样活动,而且假定其内部的热量是物质的。他在这种假定下计算了太阳的理论温度。可是爱丁顿指出辐射的重要性,它从内部出来,被外层的原子和电子所捕获,由X射线降级到可见光,因而能量只是缓缓地逸散。所以近些年来人们觉察到在高温下,辐射的和物质的两种热量之比比较想像的大,事实上这两者大约是相等的。在5000℃的温度,辐射压在每平方英尺上约为1/20英两,可是在太阳中心两千万度的高温下,辐射压在每平方英寸上,高达三百万吨。
  我们考虑到太阳里自由运动的质点的压力,就可以估算出使太阳维持其所观测到的体积所必需的内部温度,起初人们认为太阳里的自由运动的质点是一般的原子和分子,但是现在我们要用新的原子理论去讨论这个问题。
  纽沃尔(Newall)曾向爱丁顿表示,太阳或恒星里的高温必使原子电离,或者说剥掉它外围的电子。例如就氧原子而论,它的原子量是16,其外围电子有8个,再加上一个核,质点的数目为9,因而其平均量为16/9或1.78。从锂的1.75到余的2.46,这些量都接近于2,可是就氢而言,原子分裂为两个质点:即质子与电子,质点的平均量为1/2,而不是2。因此,就温度的问题而言,我们可将质点概括地分为氢和非氢两类,含氢愈多的星,其理论的光度愈小。根据观测到的光度,好象1/3氢和2/3非氢的比例适合多数恒星的观测到的性质。1929年,阿特金森(Robert Atkinson)与霍特曼斯(Fritz Houtermans)指出,在太阳里很高的温度下,原子核如果损失了外围电子的保障,可能也遭到摧毁。
  恒星物质电离的概念受到量子理论的支持。这一概念最初是埃格特(Eggert,1919年)提出的,后经萨哈应用(1921年)到恒星外层,因而建立恒星光谱的现代理论。
  天文学家考虑了新的有关原子的知识,复回到勒恩的理论,仍假设巨星的质点的作用如理想气体,即使在上述的致密的恒星里也是这样。在这些致密的恒星里,原子被剥掉了外围的电子,因而它们的核和脱离了的电子的作用,象独立的质点一样。
  银河系以外,在遥远的距离处,还有别的星系,以旋涡星云的姿态出现在我们眼里。在威尔逊山100时反射望远镜里,用抽样法估计,能够看见的旋涡星云之数,当以千万计;其中最远的可能在五万万光年以外。现在制造中的200时反射望远镜能够探寻到两倍远处,因而可以显出八倍多的星云,如果它们是均匀的分布,而空间里又无吸光的物质的话。这里可以提说一下:以上所说的宇宙线来自这些外围区域,即星际空间或旋涡星云。
  以上说过,旋涡星云的谱线和地面对应的谱线比较,是向红端移动的。这表示星云有一种退行,这退行的速度是和距离成正比而增大的,现在认为这是宇宙在不断地膨胀的表现。德·西特的空间理论〔它通过弗里德曼(A.Friedmann)与勒梅特(G.Lemaitre)的数学研究,和爱因斯坦的理论联系起来〕也认为有这种膨胀的宇宙,所以我们可说观测与理论是符合的。
  米耳恩指出,如果起初星系具有现今的速度,而密集在小范围内,其中具有最大速度的,现在会离开得最远;我们应可得到所观测到的距离与退行速度之间的关系。1932年,爱丁顿估计这速度是每百万秒差距每秒528公里,在15万万(1.5×109)年后,宇宙的大小便增加一倍。这样说来,宇宙的初始半径就是328个百万(3.28×108)秒差距或10万万6800万(1.68×109)光年;宇宙的总质量为2.14×1055克,或1.08×1022个太阳的质量,宇宙的质子数或电子数为1.29×1079。528那个基本数字可能需要减小。这个不可逆或单向的过程的设想所引起的问题与热力学第二定律下熵的不断增长所引起的问题是相似的;两者都指出有一确定的开始,能量的供给量逐渐降低,以至于终于竭尽。有人说我们现令的热力学可能是膨胀宇宙的一种特性;事实上托尔曼(Tolman)就提出一种相对论性的热力学,认为在不断收缩的宇宙里第二律是反向的。能量愈来愈多,从辐射再形成物质是可能的。在这些思路上,我们也可猜想有一种脉动的宇宙,我们碰巧正好生在它的膨胀阶段,这样便不需要一个开始或者终结了。
  最终的问题是:太阳和恒星所辐射出的能量的来源是什么?既然内部的温度须维持几千万度,所以这能量不能从外面而来,似乎必须是某种原子内部的能量。爱因斯坦的质量与能量的关系(即1克物质具有9×10[20]尔格的能量)说明太阳所储蓄的总能量为1.8×10[54]尔格。以现在的输出率计,这足够供给15万亿(1.5×10[13])年,但以质量变少,因而输出率逐渐变小,这时间可能还要长些。由计算得知太阳的年龄5万亿(5×10[12])年。这是在质子与电子互相湮灭的假设下得出的结果,但上面说过,由于阿斯顿的工作,由于正电子的发现,这个假设难能成立了。
  1920年,阿斯顿对于氢原子量的精密测定说明,氢嬗变为别的元素时,可以得到大量的能量,这样便提供了能量的另外一种来源。在近几年来,这个来源看来更加可能。这个过程进行的方式就是在碳和氮的催化作用下,氢转化为氦。
  这样所获得的能量自然比由湮灭理论而得的少些,因湮灭用去太阳的全部质量,而由氢嬗变为非氢只用去了质量的10%。于是太阳的辐射可以维持100万万(10[10])年,这样长的时间已足够满足地质学者,虽然比较湮灭说所说的万亿年要短些。恒星的年龄似乎也可能只是星系退行所需的时间的几倍,我们得出的数量级约为几十万万年,譬如说2×10[9]年。如果考虑到引力收缩和放射物质所释放的能量,这数字还可能大一些。这个理论表明太阳和恒星具有稳定性。这是这一理论被人相信的原因之一。
  我们可将这些数字和地球的年龄比较,这年龄是根据各种岩石里放射元素铀和钍与其蜕变后的产物两者的相对含量测定的。由这一研究求得地壳的形成当不晚于16万万(1.6×109)年以前。
  根据相对论,空间,或者时空,有某种自然曲率,这曲率在物质附近或在电磁场里便会增加。这自然曲率是与宇宙斥力等价的相对性。在单位距离,这宇宙斥力是一个宇宙常数,常写为Y。这个常数的值,可由星系的退行速度并同时考虑万有引力而估计之。取爱丁顿的数字,星系的退行速度与距离成正比,这速度是每百万秒差距每秒500公里。在15000万(1.5×108)光年处,这速度是每秒15,000英里。在19万万(1.9×109)光年处,它是每秒190,000英里,但是这个数字大过光速,显然是有错误存在。也许爱因斯坦的或德·西特的闭合的时空(其中没有任何距离超过某一数量),可以拯救我们的理论免于毁灭。

  地质学

  近年来,地质学的最重要的进展,是通过研究地球物理学而取得的。以物理学的方法研究的结果说明,地球不恰是一个类球体,而是一个不规则的形状,名叫“大地水准面”(geoid)。由物理学的方法也获得一些海陆表面下的知识。
  在地面各处精确测量重力的结果,有一些异常的情况。杰弗里斯(Jeffreys)认为,这些异常的情况想必说明山岳不只为其下面的岩石所支持,而且部分地为地壳的力量所支持。地壳有时受到很大应力。明内兹(Meinesz)等人在东印度附近乘潜水艇观测,发现地壳上有一窄带,在不稳定的平衡状态下,向下发生显著的弯曲。布拉德(Bullard)指出,非洲大裂谷一带底部有重力反常现象;说明地壳的较轻物质,因变山谷两侧的向内推力,而被挤下去。
  地震观测,包含近震与远震两种地震的观测。近震波主要在地球表面或地壳内传播,而远震波才经过地球的深层,有些甚至通过他心附近。杰弗里斯认为,地震的研究,说明地壳是相当薄的一层(大约只有25英里),地壳里不同的物质分布在不同的地层之中。除了熟悉的凝结波与畸变波之外,现在又发现别的低速波。对这些波的观测说明,不同地区上有反射与折射现象,表明地壳内物质分布的不连续情况。经过地球内部的远震表明,地核的半径大于地球的半径之半。需要固体介质传播的畸变波并不重新出现于地核之外;因此地核可能是液体的,据杰弗里斯说,可能是铁或铁镍的熔液。
  地面下几英尺的强烈火药爆炸,可以激起类似天然地震的波动。用地震仪在若干选定地点对各种波到达时刻加以记录,可以测量其传达的速度。有些波向下通过未凝固的结构在比较凝固的层上反射回来,形成“回声”,由其反射所需的时间,可以求得这些层的深度。类似的方法可用以探寻油层,并用于海底地质学,以绘海底的地貌图。美国地质调查学会发明一种方法,从一个固定浮标上测量船只的距离:一个小炸弹由船上掷出,并记录其时刻,声音在海面传播,使浮标上的一个扬声器与一具无线电发射机开始工作,扬声器和发报机所发出的信号也在船只上加以记录;由这两种记录之间的时间差便可推算距离。大部分美国沿海地貌是这样绘成的;在大陆架与其外面的斜坡之间常有鲜明的界限。靠了观测波在岩层分界面处的反射,也获得一些有用的知识,在软的岩层中间波行较慢,在硬的岩层中间波行较速。不列颠群岛陆地是火成岩和早期水成岩的结构,但其附近的海底是较软和新形成的水成岩的结构,这些岩石在距岸150哩外,以百噚(600呎)的测索测量,深度差可达8000呎之多。
后一页
前一页
回目录
回主页